Một con lắc đơn chiều dài \(l = 1,8m\), một đầu gắn với vật khối lượng \(200g\). Thẳng phía dưới điểm treo cách điểm treo một đoạn \(\dfrac{l}{2}\) có một cái đinh. Kéo vật ra khỏi vị trí cân bằng sao cho dây treo hợp với phương thẳng đứng một góc \({30^0}\) rồi thả nhẹ. Bỏ qua mọi sức cản và ma sát, lấy \(g = 10m/{s^2}\)
Xác định góc hợp bởi dây và phương thẳng đứng sau khi va chạm với đinh?
Trả lời bởi giáo viên
Chọn gốc thế năng tại vị trí cân bằng (C)
+ Áp dụng định luật bảo toàn cơ năng tại hai điểm A và B, ta có:
${{\rm{W}}_A} = {{\rm{W}}_B} \leftrightarrow mg{h_1} = mg{h_2} \to {h_1} = {h_2}$ (1)
Mặt khác, ta có: \({h_1} = l\left( {1 - cos\alpha } \right)\)
Thế vào (1) ta suy ra: \({h_1} = {h_2} = l\left( {1 - cos\alpha } \right) = 1,8\left( {1 - cos{{30}^0}} \right) = 0,24m\)
Từ hình ta có:
$\begin{array}{l}cos\beta = \dfrac{{O'H}}{{O'B}} = \dfrac{{\dfrac{l}{2} - {h_1}}}{{\dfrac{l}{2}}} = \dfrac{{\dfrac{{1,8}}{2} - 0,24}}{{\dfrac{{1,8}}{2}}} = 0,7333\\ \to \beta = 42,{8^0}\end{array}$
Hướng dẫn giải:
+ Áp dụng định luật bảo toàn cơ năng
+ Sử dụng điểu thức tính thế năng: ${{\rm{W}}_t} = mgh$