Hai điện tích điểm q1 = 10-9C và q2 = 4.10-9C đặt cách nhau a = 9cm trong chân không. Điện thế tại điểm mà tại đó cường độ điện trường tổng hợp bằng 0?
Trả lời bởi giáo viên
Do q1.q2 > 0 nên vị trí điểm M có cường độ điện trường tổng hợp bằng 0 nằm trong khoảng giữa q1 và q2.
Gọi x là khoảng cách từ vị trí điểm M đến điện tích q1
Ta có, tại M cường độ điện trường tổng hợp bằng 0, nên ta có:
\(\begin{array}{l}\overrightarrow {{E_1}} + \overrightarrow {{E_2}} = 0 \to {E_1} = {E_2} \leftrightarrow k\frac{{{q_1}}}{{{x^2}}} = k\frac{{{q_2}}}{{{{(a - x)}^2}}}\\ \leftrightarrow a - x = 2{\rm{x}} \to x = \frac{a}{3} = 3cm = 0,03m\end{array}\)
Điện thế tại M:
\(\begin{array}{l}{V_M} = {V_{1M}} + {V_{2M}} = k\frac{{{q_1}}}{x} + k\frac{{{q_2}}}{{a - x}}\\ = {9.10^9}(\frac{{{{10}^{ - 9}}}}{{0,03}} + \frac{{{{4.10}^{ - 9}}}}{{0,09 - 0,03}}) = 900V\end{array}\)
Hướng dẫn giải:
+ Áp dụng nguyên lí chồng chất điện trường
+ Áp dụng biểu thức tính điện thế: \({V_M} = k\frac{Q}{r}\)