Câu hỏi:
2 năm trước
Đơn giản biểu thức $P = \left( {{a^{\dfrac{1}{4}}} - {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{4}}} + {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{2}}} + {b^{\dfrac{1}{2}}}} \right)\,\,\,\,(a,b > 0)$ ta được:
Trả lời bởi giáo viên
Đáp án đúng: c
Ta có:
$P = \left( {{a^{\dfrac{1}{4}}} - {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{4}}} + {b^{\dfrac{1}{4}}}} \right)\left( {{a^{\dfrac{1}{2}}} + {b^{\dfrac{1}{2}}}} \right) = \left( {{a^{\dfrac{1}{2}}} - {b^{\dfrac{1}{2}}}} \right)\left( {{a^{\dfrac{1}{2}}} + {b^{\dfrac{1}{2}}}} \right) = a - b$
Vậy \(P = a - b\).
Hướng dẫn giải:
Sử dụng các công thức lũy thừa với số mũ hữu tỉ \({a^m}.{a^n} = {a^{m + n}}\).