Đề thi THPT QG - 2021 - mã 102
Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left( {{3^{{x^2}}} - {9^x}} \right)\left( {{{\log }_2}\left( {x + 30} \right) - 5} \right) \le 0\)?
Trả lời bởi giáo viên
Điều kiện xác định: \(x > - 30\)
TH1: \(\left\{ \begin{array}{l}{3^{{x^2}}} - {9^x} \le 0\\{\log _2}\left( {x + 30} \right) - 5 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{3^{{x^2}}} \le {9^x}\\{\log _2}\left( {x + 30} \right) \ge 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} \le 2x\\x + 30 \ge {2^5}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0 \le x \le 2\\x \ge 2\end{array} \right.\) \( \Rightarrow x = 2\) (tmđk)
Nên có \(1\) giá trị \(x\) thỏa mãn.
TH2: \(\left\{ \begin{array}{l}{3^{{x^2}}} - {9^x} \ge 0\\{\log _2}\left( {x + 30} \right) - 5 \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{3^{{x^2}}} \ge {9^x}\\{\log _2}\left( {x + 30} \right) \le 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} \ge 2x\\x + 30 \le {2^5}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \ge 2\\x \le 0\end{array} \right.\\x \le 2\end{array} \right.\)
Kết hợp với ĐK: \(x > - 30\) ta được \(x = \left\{ { - 29;....; - 1;0} \right\}\) nên có \(30\) giá trị \(x\) thỏa mãn.
Vậy có \(30 + 1 = 31\) giá trị \(x\) thỏa mãn.
Hướng dẫn giải:
Tích của hai biểu thức \( \le 0\) nên hai biểu thức trái dấu, ta chia hai trường hợp.
Từ mỗi trường hợp ta giải ra các giá trị \(x\)
Đối chiếu với điều kiện xác định.