Câu hỏi:
2 năm trước
Đề thi THPT QG - 2021 - mã 101
Trên khoảng \(\left( {0; + \infty } \right)\), đạo hàm của hàm số \(y = {x^{\frac{5}{2}}}\) là
Trả lời bởi giáo viên
Đáp án đúng: c
Ta có \(\left( {{x^\alpha }} \right)' = \alpha {x^{\alpha - 1}}\,\,\left( {x > 0} \right)\) \( \Rightarrow \left( {{x^{\frac{5}{2}}}} \right)' = \dfrac{5}{2}{x^{\frac{3}{2}}}\).
Hướng dẫn giải:
Sử dụng công thức tính đạo hàm \(\left( {{x^\alpha }} \right)' = \alpha {x^{\alpha - 1}}\,\,\left( {x > 0} \right)\).