Câu hỏi:
2 năm trước
Để đa thức \({x^4} + a{x^2} + 1\) chia hết cho \({x^2} + 2x + 1\) thì giá trị của \(a\) là
Trả lời bởi giáo viên
Đáp án đúng: a
Ta có
Phần dư của phép chia đa thức \({x^4} + a{x^2} + 1\) chia hết cho\({x^2} + 2x + 1\) là \(R = \left( { - 2a - 4} \right)x - a - 2\) .
Để phép chia trên là phép chia hết thì \(R = 0 \Leftrightarrow \left( { - 2a - 4} \right)x - a - 2 = 0\) với mọi $x$
\( \Leftrightarrow \left\{ \begin{array}{l} - 2a - 4 = 0\\ - a - 2 = 0\end{array} \right. \Leftrightarrow a = - 2\) .
Hướng dẫn giải:
+ Sử dụng cách chia đa thức một biến đã sắp xếp.
+ Sử dụng nhận xét: Nếu phép chia có phần dư \(R = 0\) thì phép chia đó là phép chia hết.
Chú ý: \(Ax + B = 0\) với \(\forall x \Leftrightarrow \left\{ \begin{array}{l}A = 0\\B = 0\end{array} \right.\) .