Câu hỏi:
2 năm trước

Có bao nhiêu số tự nhiên chẵn gồm 3 chữ số khác nhau?

Trả lời bởi giáo viên

Đáp án đúng: a

Giả sử số tự nhiên chẵn gồm 3 chữ số khác nhau là: \(\overline {abc} \,\,\left( {a \ne 0} \right)\)

Khi đó,  \(c \in \left\{ {0;2;4;6;8} \right\}\)

+) Nếu \(c = 0\) có 1 cách chọn

\(a\) có 9 cách chọn

\(b\) có 8 cách chọn

\( \Rightarrow \) Có: \(1.9.8 = 72\) (số)

+)  Nếu \(c \in \left\{ {2;4;6;8} \right\}\) có 4 cách chọn

\(a\) có 8 cách chọn

\(b\) có 8 cách chọn

\( \Rightarrow \) Có: \(4.8.8 = 256\) (số)

Vậy, số số tự nhiên chẵn gồm 3 chữ số khác nhau là: \(72 + 256 = 328\)(số).

Hướng dẫn giải:

Sử dụng quy tắc cộng và nhân hợp lí.

Câu hỏi khác