Có bao nhiêu số nguyên \(x\) thỏa mãn \(\left( {{2^{{x^2}}} - {4^x}} \right)\left[ {{{\log }_2}\left( {x + 14} \right) - 4} \right] \le 0\)?
Trả lời bởi giáo viên
BPT: \(\left( {{2^{{x^2}}} - {4^x}} \right)\left[ {{{\log }_2}\left( {x + 14} \right) - 4} \right] \le 0\).
Bài này ta chia 2 trường hợp để giải.
TH1:
\(\begin{array}{l}\left\{ \begin{array}{l}{2^{{x^2}}} - {4^x} \ge 0\\{\log _2}\left( {x + 14} \right) - 4 \le 0\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}{2^{{x^2}}} \ge {2^{2x}}\\{\log _2}\left( {x + 14} \right) \le 4\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}{x^2} \ge 2x\\0 < x + 14 \le {2^4}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \le 0\\x \ge 2\end{array} \right.\\ - 14 < x \le 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 14 < x \le 0\\x = 2\end{array} \right.\end{array}\)
\( \Rightarrow \) Trường hợp này có 15 giá trị nguyên \(x \in \left\{ { - 13; - 12; - 11;...;0;2} \right\}\).
TH2:
\(\begin{array}{l}\left\{ \begin{array}{l}{2^{{x^2}}} - {2^x} \le 0\\{\log _2}\left( {x + 14} \right) - 4 \ge 0\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}{2^{{x^2}}} \le {2^{2x}}\\{\log _2}\left( {x + 14} \right) \ge 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x^2} \le 2x\\x + 14 \ge 16\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0 \le x \le 2\\x \ge 2\end{array} \right. \Leftrightarrow x = 2\end{array}\)
\( \Rightarrow \) Trường hợp này có 1 nghiệm nguyên \(x\) thuộc trường hợp 1.
Vậy có tất cả 15 nghiệm nguyên \(x\) thỏa mãn bất phương trình.
Hướng dẫn giải:
Chia các TH và giải bất phương trình.