Câu hỏi:
2 năm trước
Có bao nhiêu giá trị của $x$ thỏa mãn \(\,2{x^3}\left( {2x - 3} \right) - {x^2}\left( {4{x^2} - 6x + 2} \right) = 0\)
Trả lời bởi giáo viên
Đáp án đúng: d
\(\begin{array}{l}2{x^3}\left( {2x - 3} \right) - {x^2}\left( {4{x^2} - 6x + 2} \right) = 0\\ \Leftrightarrow 4{x^4} - 6{x^3} - 4{x^4} + 6{x^3} - 2{x^2} = 0\\ \Leftrightarrow - 2{x^2} = 0\\ \Leftrightarrow x = 0\end{array}\)
Vậy $x = 0.$
Có \(1\) giá trị của \(x\) thỏa mãn đề bài.
Hướng dẫn giải:
-Nhân đơn thức với đa thức rồi cộng trừ các hạng tử đồng dạng để biến đổi biểu thức thành tích các đa thức và đơn thức có dạng: $A.B = 0,$ suy ra $A = 0$ hoặc $B = 0,$ từ đó rút ra giá trị của $x$ cần tìm.