Cho tứ diện \(ABCD\) có \(AB = CD = a,IJ = \dfrac{{a\sqrt 3 }}{2}\) (\(I\), \(J\) lần lượt là trung điểm của \(BC\) và \(AD\)). Số đo góc giữa hai đường thẳng \(AB\) và \(CD\) là
Trả lời bởi giáo viên
Gọi \(M\), \(N\) lần lượt là trung điểm \(AC\), \(BD.\)
Ta có:
\(\left\{ \begin{array}{l}MI = NI = \dfrac{1}{2}AB = \dfrac{1}{2}CD = \dfrac{a}{2}\\MI{\text{ // }}AB{\text{ // }}NJ,MJ//CD//IN\end{array} \right. \Rightarrow MINJ\) là hình thoi.
Gọi \(O\) là giao điểm của \(MN\) và \(IJ\).
Ta có: \(\widehat {MIN} = 2\widehat {MIO}\).
Xét \(\Delta MIO\) vuông tại \(O\), ta có: \(\cos \widehat {MIO} = \dfrac{{IO}}{{MI}} = \dfrac{{\dfrac{{a\sqrt 3 }}{4}}}{{\dfrac{a}{2}}} = \dfrac{{\sqrt 3 }}{2} \Rightarrow \widehat {MIO} = 30^\circ \Rightarrow \widehat {MIN} = 60^\circ \)
Mà: \(\left( {AB,CD} \right) = \left( {IM,IN} \right) = \widehat {MIN} = 60^\circ \)
Hướng dẫn giải:
Sử dụng tính chất: \(\left\{ \begin{array}{l}a//a'\\b//b'\end{array} \right. \Rightarrow \widehat {\left( {a,b} \right)} = \widehat {\left( {a',b'} \right)}\)
Giải thích thêm:
Các em cũng có thể tính $\widehat {JIN}$ bằng cách áp dụng định lý Cô sin trong tam giác JIN như sau:
$\cos \widehat {JIN} = \frac{{I{J^2} + I{N^2} - J{N^2}}}{{2IJ.IN}} $
$= \frac{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2} + {{\left( {\frac{a}{2}} \right)}^2} - {{\left( {\frac{a}{2}} \right)}^2}}}{{2.\frac{{a\sqrt 3 }}{2}.\frac{a}{2}}}$
$= \frac{{\sqrt 3 }}{2} $
$\Rightarrow \widehat {JIN} = {30^0}$