Trả lời bởi giáo viên

Đáp án đúng: a

Đặt \(t = {\sin ^2}x \Rightarrow dt = 2\sin x\cos xdx \Rightarrow \sin x\cos xdx = \dfrac{1}{2}dt\) và \({\cos ^2}x = 1 - {\sin ^2}x = 1 - t\)

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = \dfrac{\pi }{2} \Rightarrow t = 1\end{array} \right.\)

Khi đó $I = \int\limits_0^{\dfrac{\pi }{2}} {{e^{{{\sin }^2}x}}\sin x{{\cos }^3}x} dx = \int\limits_0^{\dfrac{\pi }{2}} {{e^{{{\sin }^2}x}}co{s^2}x\sin x\cos x} dx = \dfrac{1}{2}\int\limits_0^1 {{e^t}\left( {1 - t} \right)dt} $

Hướng dẫn giải:

- Bước 1: Đặt \(t = u\left( x \right)\), đổi cận \(\left\{ \begin{array}{l}x = a \Rightarrow t = u\left( a \right) = a'\\x = b \Rightarrow t = u\left( b \right) = b'\end{array} \right.\) .

- Bước 2: Tính vi phân \(dt = u'\left( x \right)dx\).

- Bước 3: Biến đổi \(f\left( x \right)dx\) thành \(g\left( t \right)dt\).

- Bước 4: Tính tích phân \(\int\limits_a^b {f\left( x \right)dx}  = \int\limits_{a'}^{b'} {g\left( t \right)dt} \).

Câu hỏi khác