Câu hỏi:
2 năm trước

Cho tam giác $ABC$  vuông tại $A$  có $AB = AC.$ Qua $A$ kẻ đường thẳng $xy$  sao cho $B,C$ nằm cùng phía với $xy.$ Kẻ $BD$  và $CE$  vuông góc với $xy.$ Chọn câu đúng.

Trả lời bởi giáo viên

Đáp án đúng: a

Ta có: \({\widehat A_1} + {\widehat A_2} = {90^0}\,\,\,\left( {do\,\,\,\widehat {BAC} = {{90}^0}} \right)\)

Mà ${\widehat A_1} + {\widehat B_2} = {90^0}$ vì tam giác $ABD$  vuông tại $D.$

\( \Rightarrow {\widehat B_2} = {\widehat A_2}\)  (cùng phụ với \({\widehat A_1}\)).

Lại có \({\widehat A_2} + {\widehat C_1} = {90^0}\) vì tam giác $ACE$  vuông tại $E$

\( \Rightarrow {\widehat A_1} = {\widehat C_1}\) (cùng phụ với \({\widehat A_2}\)).

Xét hai tam giác vuông $BDA$  và $AEC$  có:

\(\widehat D = \widehat E = {90^0}\); \(AB = AC\) (gt) và \(\widehat {{A_1}} = \widehat {{C_1}}\) (cmt)

\( \Rightarrow \Delta BA{\rm{D}} = \Delta ACE\) (cạnh huyền – góc nhọn)

Suy ra $BD = AE$ (hai cạnh tương ứng), $CE = AD$ (hai cạnh tương ứng).

Do đó $DE = AD + AE = CE + BD.$

Hướng dẫn giải:

+ Dựa vào hệ quả của trường hợp bằng nhau thứ ba của tam giác để chứng minh các cặp tam giác bằng nhau

+ Từ các cặp cạnh tương ứng bằng nhau ta lập luận để suy ra mối quan hệ đúng.

Câu hỏi khác