Câu hỏi:
2 năm trước

Cho tam giác \(ABC\) có \(\angle B,\angle C\) là góc nhọn và có diện tích không đổi. Tìm giá trị nhỏ nhất của biểu thức \(P = 2B{C^2} + A{C^2} + A{B^2}\).

Trả lời bởi giáo viên

Đáp án đúng: b

Kẻ đường cao \(AH\). Vì \(\angle B,\,\,\angle C\) là các góc nhọn nên \(H\) thuộc đoạn thẳng \(BC\).

Áp dụng định lí Pytago ta có:

\(\begin{array}{l}A{C^2} = A{H^2} + H{C^2}\\A{B^2} = A{H^2} + B{H^2}\end{array}\)

\( \Rightarrow P = 2B{C^2} + 2A{H^2} + B{H^2} + H{C^2}\).

Ta có \(B{C^2} + A{H^2} \ge 2BC.AH = 4{S_{\Delta ABC}}\).

\(B{H^2} + C{H^2} \ge \dfrac{{{{\left( {BH + CH} \right)}^2}}}{2} = \dfrac{{B{C^2}}}{2}\).

Do đó \(P \ge 8{S_{\Delta ABC}} + \dfrac{{B{C^2}}}{2}\).

Do \({S_{\Delta ABC}}\) không đổi, \(A,\,\,B,\,\,C\) cố định nên \(P\) đạt giá trị nhỏ nhất bằng \(8{S_{\Delta ABC}} + \dfrac{{B{C^2}}}{2}\).

Dấu “=” xảy ra khi \(BH = CH \Rightarrow \Delta ABC\) cân tại \(A\).

Hướng dẫn giải:

Kẻ đường cao \(AH\) của tam giác \(ABC\)

Áp dụng định lí Py – ta – go, tính được \(P = \left( {B{C^2} + A{H^2}} \right) + \left( {B{H^2} + C{H^2}} \right)\)

Áp dụng các bất đẳng thức, tìm được giá trị nhỏ nhất của \(P\).

Câu hỏi khác