Trả lời bởi giáo viên
ĐKXĐ: \(\left\{ \begin{array}{l}4x \ne \dfrac{\pi }{2} + k\pi \\x \ne \dfrac{\pi }{2} + k\pi \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne \dfrac{\pi }{8} + \dfrac{{k\pi }}{4}\\x \ne \dfrac{\pi }{2} + k\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
\(\begin{array}{l}\tan 4x.\tan x = - 1\\ \Leftrightarrow \tan 4x = - \dfrac{1}{{\tan x}}\\ \Leftrightarrow \tan 4x = - \cot x\\ \Leftrightarrow \tan 4x = - \tan \left( {\dfrac{\pi }{2} - x} \right)\\ \Leftrightarrow \tan 4x = \tan \left( {x - \dfrac{\pi }{2}} \right)\\ \Leftrightarrow 4x = x - \dfrac{\pi }{2} + k\pi \\ \Leftrightarrow 3x = - \dfrac{\pi }{2} + k\pi \\ \Leftrightarrow x = - \dfrac{\pi }{6} + \dfrac{{k\pi }}{3}\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)
Đối chiếu điều kiện:
\(\begin{array}{l} + )\,\, - \dfrac{\pi }{6} + \dfrac{{k\pi }}{3} \ne \dfrac{\pi }{8} + \dfrac{{m\pi }}{4}\\ \Leftrightarrow - 4 + 8k \ne 3 + 6m\end{array}\)
Luôn đúng vì \( - 4 + 8k\) là số chẵn và \(3 + 6m\) là số lẻ \(\left( {m,\,\,k \in \mathbb{Z}} \right)\).
\(\begin{array}{l} + )\,\, - \dfrac{\pi }{6} + \dfrac{{k\pi }}{3} \ne \dfrac{\pi }{2} + m\pi \\ \Leftrightarrow - 1 + 2k \ne 3 + 6m\\ \Leftrightarrow k \ne 2 + 3m\,\,\left( {m \in Z} \right)\end{array}\)
Vậy nghiệm của phương trình là \( - \dfrac{\pi }{6} + k\dfrac{\pi }{3}\,\,\left( {k \in \mathbb{Z},\,\,k \ne 2 + 3m,\,m \in \mathbb{Z}} \right)\)
Hướng dẫn giải:
- Tìm ĐKXĐ.
- Chia cả hai vế cho \(\tan x\), sử dụng công thức \(\cot x = \dfrac{1}{{\tan x}}\).
- Sử dụng công thức: \(\cot x = \tan \left( {\dfrac{\pi }{2} - x} \right),\,\,\tan \left( { - x} \right) = - \tan x\).
- Giải phương trình lượng giác cơ bản: \(\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).