Cho phương trình \(m\ln \left( {x + 1} \right) - x - 2 = 0\). Biết rằng tập hợp tất cả các giá trị của tham số m để phương trình đã cho có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(0 < {x_1} < 2 < 4 < {x_2}\) là khoảng \(\left( {a; + \infty } \right).\) Khi đó \(a\) thuộc khoảng nào dưới đây ?
Trả lời bởi giáo viên
ĐKXĐ: \(x > - 1\).
Ta có: \(m\ln \left( {x + 1} \right) - x - 2 = 0 \Leftrightarrow m\ln \left( {x + 1} \right) = x + 2\) (1)
Dễ dàng kiểm tra \(x = 0\) không phải nghiệm của phương trình trên.
Với \(x \ne 0\), phương trình \(\left( 1 \right) \Leftrightarrow m = \dfrac{{x + 2}}{{\ln \left( {x + 1} \right)}}\)
Xét hàm số \(f\left( x \right) = \dfrac{{x + 2}}{{\ln \left( {x + 1} \right)}}\,\,\left( {x > - 1,\,\,x \ne 0} \right)\) ta có: \(f'\left( x \right) = \dfrac{{\ln \left( {x + 1} \right) - \dfrac{{x + 2}}{{x + 1}}}}{{{{\ln }^2}\left( {x + 1} \right)}}\)
Nhận xét: Trên \(\left( { - 1; + \infty } \right)\backslash \left\{ 0 \right\}\), hàm số \(y = \ln (x + 1)\) đồng biến, hàm số \(y = \dfrac{{x + 2}}{{x + 1}}\) nghịch biến
\( \Rightarrow g\left( x \right) = \ln \left( {x + 1} \right) - \dfrac{{x + 2}}{{x + 1}} = 0\) (2) có tối đa 1 nghiệm trên \(\left( {1; + \infty } \right)\).
Mà \(g\left( 2 \right) = \ln 3 - \dfrac{4}{3} < 0,\,\,g\left( 4 \right) = \ln 5 - \dfrac{6}{5} > 0 \Rightarrow \) PT (2) có nghiệm duy nhất \({x_0} \in \left( {2;4} \right)\).
Ta có BBT của \(f\left( x \right)\) trên 2 khoảng \(\left( {0;2} \right)\) và \(\left( {4; + \infty } \right)\) như sau:
\(\left( {\dfrac{4}{{\ln 3}} \approx 3,64,\,\,\dfrac{6}{{\ln 5}} \approx 3,73} \right)\)
Như vậy, để phương trình đã cho có hai nghiệm \({x_1},{x_2}\) thỏa mãn \(0 < {x_1} < 2 < 4 < {x_2}\) thì \(m > \dfrac{6}{{\ln 5}} \approx 3,73\,\).
Hướng dẫn giải:
- Cô lập \(m\), đưa phương trình về dạng \(m = f\left( x \right)\).
- Khảo sát và lập BBT của hàm số \(f\left( x \right)\), từ đó suy ra điều kiện của \(m\) để thỏa mãn yêu cầu bài toán.