Tập xác định của hàm số \(f\left( x \right) = \sqrt {{{\log }_{\dfrac{1}{2}}}\dfrac{{3 - 2x - {x^2}}}{{x + 1}}} \) là:
Trả lời bởi giáo viên
Hàm số \(f\left( x \right) = \sqrt {{{\log }_{\dfrac{1}{2}}}\dfrac{{3 - 2x - {x^2}}}{{x + 1}}} \) xác định
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}{\log _{\dfrac{1}{2}}}\dfrac{{3 - 2x - {x^2}}}{{x + 1}} \ge 0\\\dfrac{{3 - 2x - {x^2}}}{{x + 1}} > 0\\x + 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\log _{\dfrac{1}{2}}}\dfrac{{3 - 2x - {x^2}}}{{x + 1}} \ge {\log _{\dfrac{1}{2}}}1\\\dfrac{{ - \left( {x - 1} \right)\left( {x + 3} \right)}}{{x + 1}} > 0\\x + 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{3 - 2x - {x^2}}}{{x + 1}} \le 1\\\left[ \begin{array}{l}x < - 3\\ - 1 < x < 1\end{array} \right.\\x \ne - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{3 - 2x - {x^2} - x - 1}}{{x + 1}} \le 0\\\left[ \begin{array}{l}x < - 3\\ - 1 < x < 1\end{array} \right.\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{ - {x^2} - 3x + 2}}{{x + 1}} \le 0\\\left[ \begin{array}{l}x < - 3\\ - 1 < x < 1\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}\dfrac{{ - 3 - \sqrt {17} }}{2} \le x \le - 1\\x \ge \dfrac{{ - 3 + \sqrt {17} }}{2}\end{array} \right.\\\left[ \begin{array}{l}x < - 3\\ - 1 < x < 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\dfrac{{ - 3 - \sqrt {17} }}{2} \le x < - 3\\\dfrac{{ - 3 + \sqrt {17} }}{2} \le x < 1\end{array} \right.\end{array}\)
Vậy tập xác định của phương trình là \(D = \left[ {\dfrac{{ - 3 - \sqrt {17} }}{2}; - 3} \right) \cup \left[ {\dfrac{{ - 3 + \sqrt {17} }}{2};1} \right)\)
Hướng dẫn giải:
Hàm số \(y = {\log _a}x\) xác định \( \Leftrightarrow \left\{ \begin{array}{l}x > 0\\0 < a \ne 1\end{array} \right.\)
Hàm số \(y = \sqrt A \) xác định \( \Leftrightarrow A \ge 0\)
Hàm số có dạng \(\dfrac{A}{B}\) xác định khi và chỉ khi \(B \ne 0\).