Câu hỏi:
2 năm trước

Cho phương trình \({\log _7}\left( {{x^2} + 2x + 2} \right) + 1 > {\log _7}\left( {{x^2} + 6x + 5 + m} \right)\). Có tất cả bao nhiêu giá trị nguyên của tham số m để bất phương trình trên có tập nghiệm chứa khoảng \(\left( {1;3} \right)\)?

Trả lời bởi giáo viên

Đáp án đúng: a

ĐK: \({x^2} + 6x + 5 + m > 0.\)

\(\begin{array}{l}{\log _7}\left( {{x^2} + 2x + 2} \right) + 1 > {\log _7}\left( {{x^2} + 6x + 5 + m} \right)\\ \Leftrightarrow {\log _7}7\left( {{x^2} + 2x + 2} \right) > {\log _7}\left( {{x^2} + 6x + 5 + m} \right)\\ \Leftrightarrow 7\left( {{x^2} + 2x + 2} \right) > {x^2} + 6x + 5 + m\\ \Leftrightarrow 7{x^2} + 14x + 14 - {x^2} - 6x - 5 - m > 0\\ \Leftrightarrow 6{x^2} + 8x + 9 - m > 0\end{array}\)

Bất phương trình đã cho có tập nghiệm chứa \(\left( {1;3} \right)\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}{x^2} + 6x + 5 + m > 0,\forall x \in \left( {1;3} \right)\\6{x^2} + 8x + 9 - m > 0,\forall x \in \left( {1;3} \right)\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m >  - {x^2} - 6x - 5,\forall x \in \left( {1;3} \right)\\m < 6{x^2} + 8x + 9,\forall x \in \left( {1;3} \right)\end{array} \right.\,\,\left( * \right)\end{array}\)

\( \Leftrightarrow \left\{ \begin{array}{l}m \ge \mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right)\\m \le \mathop {\min }\limits_{\left[ {1;3} \right]} g\left( x \right)\end{array} \right.\)

với \(f\left( x \right) =  - {x^2} - 6x - 5\) và \(g\left( x \right) = 6{x^2} + 8x + 9\)

Ta có:

\(f'\left( x \right) =  - 2x - 6 = 0\) \( \Leftrightarrow x =  - 3 \notin \left( {1;3} \right)\) và \(f'\left( x \right) < 0,\forall x \in \left( {1;3} \right)\) nên hàm số \(y = f\left( x \right)\) nghịch biến trên \(\left( {1;3} \right)\)

\( \Rightarrow \mathop {\max }\limits_{\left[ {1;3} \right]} f\left( x \right) = f\left( 1 \right) =  - 12\) \( \Rightarrow m \ge  - 12\)

\(g'\left( x \right) = 12x + 8 = 0\) \( \Leftrightarrow x =  - \frac{2}{3} \notin \left( {1;3} \right)\) và \(g'\left( x \right) > 0,\forall x \in \left( {1;3} \right)\) nên hàm số \(y = g\left( x \right)\) đồng biến trên \(\left( {1;3} \right)\)

\( \Rightarrow \mathop {\min }\limits_{\left[ {1;3} \right]} g\left( x \right) = g\left( 1 \right) = 23\) \( \Rightarrow m \le 23\)

Vậy \( - 12 \le m \le 23\).

Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 12; - 11;...;23} \right\}\) hay có \(23 - \left( { - 12} \right) + 1 = 36\) giá trị.

Câu hỏi khác