Cho $n$ điểm phân biệt $\left( {n \ge 2;\,n \in N} \right)$ trong đó không có ba điểm nào thẳng hàng. Vẽ các đoạn thẳng nối hai trong $n$ điểm đó. Có tất cả $28$ đoạn thẳng. Hãy tìm $n.$
Trả lời bởi giáo viên
Số đoạn thẳng tạo thành từ $n$ điểm phân biệt trong đó không có ba điểm nào thẳng hàng là $\dfrac{{n\left( {n - 1} \right)}}{2}$ $\left( {n \ge 2;\,n \in N} \right)$
Theo đề bài có $28$ đoạn thẳng được tạo thành nên ta có $\dfrac{{n\left( {n - 1} \right)}}{2} = 28 \Rightarrow n\left( {n - 1} \right) = 56 = 8.7$
Nhận thấy $\left( {n - 1} \right)$ và $n$ là hai số tự nhiên liên tiếp, suy ra $n = 8.$
Hướng dẫn giải:
Sử dụng công thức tính số đoạn thẳng:
Với \(n\) điểm cho trước \(\left( {n \in N;\,n \ge 2} \right)\) và không có ba điểm nào thẳng hàng thì số đoạn thẳng vẽ được là \(\dfrac{{n.\left( {n - 1} \right)}}{2}\) .
Từ đó tìm ra $n.$