Câu hỏi:
2 năm trước
Cho mặt phẳng \(\left( P \right):x - y + z = 1,\left( Q \right):x + z + y - 2 = 0\) và điểm \(M\left( {0;1;1} \right)\). Chọn kết luận đúng:
Trả lời bởi giáo viên
Đáp án đúng: b
Ta có:
\(d\left( {M,\left( P \right)} \right) = \dfrac{{\left| {0 - 1 + 1 - 1} \right|}}{{\sqrt {{1^2} + {1^2} + {1^2}} }} = \dfrac{1}{{\sqrt 3 }}\) và \(d\left( {M,\left( Q \right)} \right) = \dfrac{{\left| {0 + 1 + 1 - 2} \right|}}{{\sqrt {{1^2} + {1^2} + {1^2}} }} = 0\) nên A sai, D sai, B đúng.
Do đó \(M \in \left( Q \right),M \notin \left( P \right)\) nên C sai.
Hướng dẫn giải:
Tính khoảng cách từ \(M\) đến hai mặt phẳng trên, từ đó suy ra kết quả.