Cho hình chóp $S.ABC$ thỏa mãn $SA{\rm{ }} = {\rm{ }}SB{\rm{ }} = {\rm{ }}SC$. Tam giác $ABC$ vuông tại $A$. Gọi $H$ là hình chiếu vuông góc của $S$ lên $mp\left( {ABC} \right)$. Chọn khẳng định sai trong các khẳng định sau?
Trả lời bởi giáo viên
Do SH\(\bot\) (ABC) nên \(SH\bot HA, SH\bot HB, SH\bot HC\).
Xét các tam giác vuông SHA, SHB, SHC có:
SA=SB=SC
SH chung
Do đó \(\Delta SAH=\Delta SBH=\Delta SCH\)
Suy ra HA=HB=HC hay H là tâm đường tròn ngoại tiếp tam giác ABC.
Mà tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác là trung điểm BC hay H là trung điểm của BC.
Do đó $\left( SBH \right) \equiv \left( SCH \right)$ nên A sai.
Lại có $\left( SAH \right)\cap ~\left( SBH \right)\text{ }=\text{ }SH$ và $\left( {SAH} \right) \cap \left( {SCH} \right){\rm{ }} = {\rm{ }}SH$ nên B và D đều đúng.
Vì \(SH \bot \left( {ABC} \right) \Rightarrow SH \bot AB\) nên C đúng.
Hướng dẫn giải:
Sử dụng tính chất đường thẳng vuông góc mặt phẳng và xác định giao tuyến của các mặt phẳng.