Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $\widehat {ABC} = {60^0}$, tam giác $SBC$ là tam giác đều có bằng cạnh $2a$ và nằm trong mặt phẳng vuông với đáy. Gọi $\varphi $ là góc giữa hai mặt phẳng $\left( {SAC} \right)$ và $\left( {ABC} \right)$. Mệnh đề nào sau đây đúng?
Trả lời bởi giáo viên
Gọi $H$ là trung điểm của \(BC\), suy ra $SH \bot BC \Rightarrow SH \bot \left( {ABC} \right)$.
Gọi $K$ là trung điểm $AC$, suy ra $HK$//$AB$ nên $HK \bot AC$.
Ta có $\left\{ \begin{array}{l}AC \bot HK\\AC \bot SH\end{array} \right. \Rightarrow AC \bot \left( {SHK} \right) \Rightarrow AC \bot SK.$
$\left\{ \begin{array}{l}\left( {SAC} \right) \cap \left( {ABC} \right) = AC\\\left( {SAC} \right) \supset SK \bot AC\\\left( {ABC} \right) \supset HK \bot AC\end{array} \right. \Rightarrow \widehat {\left( {\left( {SAC} \right);\left( {ABC} \right)} \right)} = \widehat {\left( {SK;HK} \right)} = \widehat {SKH}.$
Tam giác vuông $ABC$, có $AB = BC.\cos \widehat {ABC} = a \Rightarrow HK = \dfrac{1}{2}AB = \dfrac{a}{2}.$
Tam giác \(SBC\) đều cạnh \(2a\) có đường cao \(SH = \dfrac{{2a\sqrt 3 }}{2}\)
Tam giác vuông $SHK$, có $\tan \widehat {SKH} = \dfrac{{SH}}{{HK}} = \dfrac{{\dfrac{{2a\sqrt 3 }}{2}}}{{\dfrac{a}{2}}} = 2\sqrt 3 $.
Hướng dẫn giải:
Sử dụng phương pháp xác định góc giữa hai mặt phẳng và áp dụng các hệ thức lượng trong tam giác vuông