Cho hệ phương trình: \(\left\{ \begin{array}{l}x + my = m + 1\\mx + y = 3m - 1\end{array} \right.\) \(\begin{array}{l}\left( 1 \right)\\\left( 2 \right)\end{array}\)
Tìm \(m\) để hệ trên có nghiệm duy nhất sao cho \(x.y\) đạt giá trị nhỏ nhất.
Trả lời bởi giáo viên
Theo câu trước ta có hệ có nghiệm duy nhất khi và chỉ khi \(m \ne \pm 1\).
Khi đó: \(\left\{ \begin{array}{l}x = \dfrac{{3m + 1}}{{m + 1}} = 3 - \dfrac{2}{{m + 1}}\\y = \dfrac{{m - 1}}{{m + 1}} = 1 - \dfrac{2}{{m + 1}}\end{array} \right.\) Suy ra: \(y = x - 2.\)
Nên \(xy = x.\left( {x - 2} \right) = {x^2} - 2x + 1 - 1 = {\left( {x - 1} \right)^2} - 1 \ge - 1\)
Dấu bằng xảy ra khi và chỉ khi: \(x = 1 \Leftrightarrow 3 - \dfrac{2}{{m + 1}} = 1 \Leftrightarrow \dfrac{2}{{m + 1}} = 2 \Leftrightarrow m + 1 = 1 \Leftrightarrow m = 0\).
Vậy với \(m = 0\) thì \(x.y\) đạt giá trị nhỏ nhất.
Hướng dẫn giải:
+ Tìm \(m\) để hệ phương trình có nghiệm duy nhất (sử dụng kết quả câu trước).
+ Tìm \(x;y\) theo \(m\) và biến đổi để có \(x.y\) nhỏ nhất.