Cho hệ phương trình $\left\{ \begin{array}{l}(m - 1)x + y = 2\\mx + y = m + 1\end{array} \right.$ ($m$ là tham số). Kết luận nào sau đây là đúng khi nói về nghiệm $\left( {x;y} \right)$ của hệ phương trình
Trả lời bởi giáo viên
Từ $\left( {m - 1} \right)x + y = 2$ thế vào phương trình còn lại ta được phương trình:
$mx + 2-\left( {m - 1} \right)x = m + 1 \Leftrightarrow x = m-1$ suy ra $y = 2-{\left( {m - 1} \right)^2}$ với mọi $m$
Vậy hệ phương trình luôn có nghiệm duy nhất $\left( {x;y} \right) = \left( {m - 1;2-{{\left( {m - 1} \right)}^2}} \right)$
$2x + {\rm{ }}y = 2\left( {m - 1} \right) + 2-{\left( {m - 1} \right)^2} = - {m^2} + 4m - 1$
$= 3-{\left( {m - 2} \right)^2} \le 3$ với mọi $m$.
Hướng dẫn giải:
Bước 1: Giải hệ phương trình tìm được nghiệm $\left( {x,y} \right)$ theo tham số $m$
Bước 2: Thay $x,y$ vừa tìm được vào hệ thức yêu cầu để tìm $m$
Câu hỏi khác
Điền vào các vị trí $\left( 1 \right);\left( 2 \right)$ trong bảng sau ($R$ là bán kính của đường tròn, $d$ là khoảng cách từ tâm đến đường thẳng) :
$R$ |
$d$ |
Vị trí tương đối của đường thẳng và đường tròn |
$5cm$ |
$\,4\,cm$ |
...............$\left( 1 \right)$................... |
$8cm$ |
...$\left( 2 \right)$... |
Tiếp xúc nhau |