Cho hàm số $y = {x^3} - 3{x^2} + 2x - 5$ có đồ thị $\left( C \right)$. Có bao nhiêu cặp điểm thuộc đồ thị $\left( C \right)$ mà tiếp tuyến với đồ thị tại chúng là hai đường thẳng song song?
Trả lời bởi giáo viên
Ta có: $y' = 3{{\text{x}}^2} - 6{\text{x}} + 2$
Số cặp điểm thuộc đồ thị $\left( C \right)$ có tiếp tuyến song song nhau
$ \Leftrightarrow $ số cặp nghiệm phương trình $3{{\text{x}}^2} - 6{\text{x}} + 2 = m$ với $m \in R$ thỏa mãn phương trình $3{x^2} - 6x + 2 = m$ có hai nghiệm phân biệt.Có vô số giá trị của $m$ để phương trình trên có hai nghiệm phân biệt nên có vô số cặp điểm.
Hướng dẫn giải:
Gọi hệ số góc của hai tiếp tuyến song song là $m$, khi đó số cặp điểm thỏa mãn chính là số cặp nghiệm của phương trình $y' = m$ với $m$ bất kì.
Giải thích thêm:
Có thể sử dụng nhận xét dưới đây:
Các tiếp tuyến với đồ thị hàm số bậc ba tại hai tiếp điểm mà đối xứng với nhau qua điểm uốn thì đều song song.
Do đó có vô số cặp điểm thuộc đồ thị hàm số mà đối xứng với nhau qua điểm uốn nên sẽ có vô số cặp điểm thỏa mãn bài toán.