Cho hàm số $y = \dfrac{1}{3}{x^3} - m{x^2} + (2m - 4)x - 3.$ Tìm $m$ để hàm số có các điểm cực đại, cực tiểu ${x_1};{x_2}$ thỏa mãn: $x_1^2 + x_2^2 = {x_1}.{x_2} + 10$
Trả lời bởi giáo viên
\(y' = {x^2} - 2mx + 2m - 4\)
Để hàm số có cực đại cực tiểu \( \Leftrightarrow \Delta ' > 0,\forall m \Leftrightarrow {m^2} - 2m + 4 > 0,\forall m\)
Khi đó phương trình $y'=0$ có hai nghiệm $x_1,x_2$ thỏa mãn
\(\left\{ \begin{array}{l}{x_1} + {x_2} = - \dfrac{b}{a} = 2m\\{x_1}{x_2} = \dfrac{c}{a} = 2m - 4\end{array} \right.\)
Ta có:
\(\begin{array}{l}x_1^2 + x_2^2 = {x_1}.{x_2} + 10\\ \Leftrightarrow {({x_1} + {x_2})^2} - 2{x_1}{x_2} - {x_1}{x_2} - 10 = 0\\ \Leftrightarrow {({x_1} + {x_2})^2} - 3{x_1}{x_2} - 10 = 0\\ \Leftrightarrow {(2m)^2} - 3.(2m - 4) - 10 = 0\\ \Leftrightarrow 4{m^2} - 6m + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = \dfrac{1}{2}\end{array} \right.\end{array}\)
Hướng dẫn giải:
- Bước 1: Tính $y'$.
- Bước 2: Tìm điều kiện để hàm số có hai cực trị $ \Leftrightarrow y' = 0$ có hai nghiệm phân biệt.
- Bước 3: Sử dụng hệ thức Vi-et để thay $\left\{ \begin{gathered} {x_1} + {x_2} = S \hfill \\{x_1}{x_2} = P \hfill \\\end{gathered} \right.$ và tìm $m$.