Cho hai hình trụ. Hình trụ thứ nhất có bán kính đáy bằng nửa bán kính đáy của hình trụ thứ hai và có chiều cao gấp bốn lần chiều cao của hình trụ thứ hai. Tỉ số các thể tích của hình trụ thứ nhất và hình trụ thứ hai bằng:
Trả lời bởi giáo viên
Giả sử hình trụ thứ nhất có bán kính đáy là \(R\) và chiều cao là \(h.\) Thể tích hình trụ thứ nhất là: ${V_1} = \pi {R^2}h$ (1)
Vì hình trụ thứ nhất có bán kính đáy bằng nửa bán kính đáy của hình trụ thứ hai và có chiều cao gấp bốn lần chiều cao của hình trụ thứ hai nên hình trụ thứ hai có bán kính đáy là \(2R\) và chiều cao là \(\dfrac{h}{4}.\)
Thể tích hình trụ thứ hai là: ${V_2} = \pi {\left( {2R} \right)^2}.\dfrac{h}{4} = \pi {R^2}h$ (2)
Từ (1) và (2) suy ra \({V_1} = {V_2} \Rightarrow \dfrac{{{V_1}}}{{{V_2}}} = 1\)
Hướng dẫn giải:
Hình trụ có bán kính đáy $R$ và chiều cao \(h\) có thể tích là \(V = \pi {R^2}h.\)