Câu hỏi:
2 năm trước

Cho đường thẳng \(\left( {{d_1}} \right):y = x + 2\) và đường thẳng \(\left( {{d_2}} \right):y = \left( {2{m^2} - m} \right)x + {m^2} + m\).

Tính diện tích tam giác \(OMN\) với \(M,N\) lần lượt là giao điểm của \(({d_1})\) với các trục tọa độ \(Ox,Oy\).

Trả lời bởi giáo viên

Đáp án đúng: c

Gọi \(M,N\) lần lượt là giao điểm của đường thẳng \(\left( {{d_1}} \right)\) với các trục tọa độ \(Ox,Oy\). Ta có:

Cho \(y = 0 \Rightarrow x =  - 2 \Rightarrow A\left( { - 2;0} \right)\), cho \(y = 0 \Rightarrow x =  - 2 \Rightarrow N\left( { - 2;0} \right)\). Từ đó suy ra \(OM = ON = 2\).

Tam giác $OMN$ vuông cân tại \(O\) nên \({S_{OMN}} = \dfrac{1}{2}OM.ON = 2\) ( đvdt).

Hướng dẫn giải:

+ Tìm tọa độ M, N. Tính độ dài \(OM;ON\)  sau đó tính diện tích tam  giác \(OMN.\)

Câu hỏi khác