Các phân thức \(\dfrac{1}{{4x - 12}};\dfrac{1}{{4x + 12}};\dfrac{4}{{9 - {x^2}}}\) có mẫu chung là:
Trả lời bởi giáo viên
Ta có các phân thức: \(\dfrac{1}{{4x - 12}};\dfrac{1}{{4x + 12}};\dfrac{4}{{9 - {x^2}}}\) có mẫu lần lượt là:
\(4x - 12 = 4\left( {x - 3} \right);4x + 12 = 4\left( {x + 3} \right);\)\(9 - {x^2} = - \left( {x - 3} \right)\left( {x + 3} \right)\)
Nên mẫu thức chung có phần hệ số là \(4\) và phần biến số là \(\left( {x - 3} \right)\left( {x + 3} \right)\).
Hay mẫu thức chung là \(4\left( {x - 3} \right)\left( {x + 3} \right)\).
Hướng dẫn giải:
Tìm mẫu chung:
+ Phân tích phần hệ số thành thừa số nguyên tố và phần biến thành nhân tử.
+ Mẫu chung bao gồm: phần hệ số là BCNN của các hệ số của mẫu và phần biến là tích giữa các nhân tử chung và riêng mỗi nhân tử lấy số mũ lớn nhất.