Câu hỏi:
2 năm trước
Với \(a,b,c\) bất kỳ. Hãy so sánh \(3\left( {{a^2} + {b^2} + {c^2}} \right)\) và \({\left( {a + b + c} \right)^2}\)
Trả lời bởi giáo viên
Đáp án đúng: c
Xét hiệu:
$3({a^2} + {b^2} + {c^2}) - {(a + b + c)^2}$
$\begin{array}{l} = 3{a^2} + 3{b^2} + 3{c^2} - {a^2} - {b^2} - {c^2} - 2ab - 2bc - 2ac\\ = 2{a^2} + 2{b^2} + 2{c^2} - 2ab - 2bc - 2ac\\ = {(a - b)^2} + {(b - c)^2} + {(c - a)^2} \ge 0\end{array}$
(vì ${(a - b)^2} \ge 0;\,{(b - c)^2} \ge 0;\,{(c - a)^2} \ge 0$ với mọi \(a,b,c\))
Nên $3({a^2} + {b^2} + {c^2}) \ge {(a + b + c)^2}$ .
Hướng dẫn giải:
Phương pháp xét hiệu.