Câu hỏi:
2 năm trước

Tam giác $ABC$  vuông tại $A$ có đường cao $AH$ . Cho biết $AB = 3cm$ ; $AC = 4cm$ . Tính độ dài các đoạn thẳng  $HA, HB.$

Trả lời bởi giáo viên

Đáp án đúng: d
Lời giải - Đề kiểm tra học kì 2 - Đề số 1 - ảnh 1

Áp dụng định lý Pytago vào tam giác vuông  $ABC$  ta có:

\(\begin{array}{l}A{B^2} + A{C^2} = B{C^2}\\ \Leftrightarrow {3^2} + {4^2} = B{C^2}\\ \Leftrightarrow B{C^2} = 25\\ \Rightarrow BC = 5\;cm\end{array}\)

Xét 2 tam giác vuông $ABC$  và $HBA$  có: \(\widehat B\) chung

\( \Rightarrow \Delta ABC\backsim\Delta HBA\;(g - g)\)

\( \Rightarrow \dfrac{{AB}}{{HB}} = \dfrac{{BC}}{{BA}} \Rightarrow HB = \dfrac{{A{B^2}}}{{BC}} = \dfrac{{{3^2}}}{5} = 1,8\;cm\)

Mặt khác:

\(\dfrac{{AB}}{{HB}} = \dfrac{{AC}}{{HA}} \Rightarrow HA = \dfrac{{AC.HB}}{{AB}} = \dfrac{{4.1,8}}{3} = 2,4\;cm\)

Nên \(HA = 2,4\,cm;\,HB = 1,8\,cm\) .

Hướng dẫn giải:

- Chứng minh các cặp tam giác đồng dạng phù hợp để tìm ra tỉ lệ thức thích hợp.

- Tính độ dài các cạnh cần tìm dựa vào định lý Pitago và dữ kiện đã có.

Giải thích thêm:

- Học sinh cần viết  tỉ lệ đồng dạng theo đúng thứ tự đỉnh, cạnh tương ứng của 2 tam giác.

- Học sinh cần chú ý trong kĩ năng đại số tránh mắc sai lầm trong tính toán.

Câu hỏi khác