Vệ tinh nhân tạo đầu tiên được Liên Xô (cũ) phóng từ Trái Đất năm 1957. Quỹ đạo của vệ tinh đó là một đường elip nhận tâm Trái Đất là một tiêu điểm. Người ta đo được vệ tinh cách bề mặt Trái Đất gần nhất là 583 dặm và xa nhất là 1342 dặm (1 dặm xấp xỉ 1,609 km). Tìm tâm sai của quỹ đạo đó, biết bán kính của Trái Đất xấp xỉ 4000 dặm. (Nguồn: Sách giáo khoa Hình học 10, Ban Nâng cao, Nhà xuất bản Giáo dục Việt Nam, 2018)
Trả lời bởi giáo viên
A.0,076
Chọn hệ trục toạ độ sao cho tâm Trái Đất trùng với tiêu điểm F1 của elip.
Khi đó elip có phương trình là
\(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\;\left( {a > b > 0} \right).\)
Theo đề bài, ta có: vệ tinh cách bề mặt Trái Đất gần nhất là 583 dặm và xa nhất là 1342 dặm
Mà bán kính của Trái Đất xấp xỉ 4000 dặm
=> Vệ tinh cách tâm Trái Đất gần nhất là 583 + 4000 = 4583 dặm và xa nhất là 1342 + 4000 = 5342 dặm.
Giả sử vệ tinh có toạ độ là M(x; y).
Khi đó khoảng cách từ vệ tinh đến tâm Trái Đất là: \(M{F_1}\; = a + \;\dfrac{c}{a}x\)
Vì \(-a \le x \le a\) nên \(a-c{\rm{ }} \le M{F_1}\; \le a + c.\)
Vậy khoảng cách nhỏ nhất và lớn nhất từ vệ tinh đến tâm Trái Đất lần lượt là a – c và a + c.
Vậy tâm sai của quỹ đạo này xấp xỉ 0,076.
Hướng dẫn giải:
Đường elip có phương trình là \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\;\left( {a > b > 0} \right).\)