Câu hỏi:
2 năm trước

Trong không gian với hệ tọa độ \(Oxyz,\) cho vecto \(\overrightarrow {AO}  = 3\left( {\overrightarrow i  + 4\overrightarrow j } \right) - 2\overrightarrow k  + 5\overrightarrow j .\) Tọa độ điểm \(A\) là:

Trả lời bởi giáo viên

Đáp án đúng: b

Ta có: \(\overrightarrow {AO}  = 3\left( {\overrightarrow i  + 4\overrightarrow j } \right) - 2\overrightarrow k  + 5\overrightarrow j \)

\(\begin{array}{l} \Leftrightarrow \overrightarrow {AO}  = 3\overrightarrow i  + 12\overrightarrow j  - 2\overrightarrow k  + 5\overrightarrow j \\ \Leftrightarrow \left( { - {x_A};\, - {y_A};\, - {z_A}} \right) = 3\overrightarrow i  + 17\overrightarrow j  - 2\overrightarrow k \\ \Leftrightarrow \left( { - {x_A};\, - {y_A};\, - {z_A}} \right) = \left( {3;\,\,17;\, - 2} \right)\\ \Leftrightarrow \left( {{x_A};\,\,\,{y_A};\,\,\,{z_A}} \right) = \left( { - 3; - 17;\,\,2} \right)\\ \Rightarrow A\left( { - 3; - 17;\,\,2} \right).\end{array}\)

Hướng dẫn giải:

Cho vecto \(\overrightarrow a  = {a_1}\overrightarrow i  + {a_2}\overrightarrow j  + {a_3}\overrightarrow k  \Rightarrow \overrightarrow a  = \left( {{a_1};\;{a_2};\;{a_3}} \right).\)

Câu hỏi khác