Trong không gian với hệ tọa độ $Oxyz$, cho mặt phẳng $\left( P \right):ax + by + cz - 27 = 0$ qua hai điểm $A\left( {3,2,1} \right),B\left( { - 3,5,2} \right)$ và vuông góc với mặt phẳng $\left( Q \right):3x + y + z + 4 = 0$ . Tính tổng $S = a + b + c$.
Trả lời bởi giáo viên
$A,B$ thuộc $\left( P \right)$ nên ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{3a + 2b + c - 27 = 0}&{}\\{ - 3a + 5b + 2c - 27 = 0}&{}\end{array}} \right.\)
$\left( P \right)$ vuông góc với $\left( Q \right)$ nên ta có điều kiện $3a + b + c = 0$.
Giải hệ \(\left\{ {\begin{array}{*{20}{l}}{3a + 2b + c - 27 = 0}&{}\\{ - 3a + 5b + 2c - 27 = 0}&{}\\{3a + b + c = 0}&{}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = 6}&{}\\{b = 27}&{}\\{c = - 45}&{}\end{array}} \right.\)
Suy ra $S = - 12$.
Hướng dẫn giải:
- Thay các tọa độ \(A,B\) vào phương trình của \(\left( P \right)\).
- $\left( P \right)$ vuông góc với $\left( Q \right)$ khi và chỉ khi \(\overrightarrow {{n_{(P)}}} .\overrightarrow {{n_{(Q)}}} = 0\)
- Giải hệ trên ta được \(a,b,c\).