Trong không gian với hệ tọa độ $Oxyz$, cho các điểm $A\left( {2,4, - 1} \right),{\rm{ }}B\left( {0, - 2,1} \right)$ và đường thẳng $d$ có phương trình \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 - t\\z = 1 + t\end{array} \right.\). Gọi $\left( S \right)$ là mặt cầu đi qua $A,B$ và có tâm thuộc đường thẳng $d$. Đường kính mặt cầu $\left( S \right)$ là
Trả lời bởi giáo viên
Giả sử tâm $I$ của mặt cầu $\left( S \right)$ thuộc $d$, ta có $I\left( {1 + 2t,2 - t,1 + t} \right)$. Vì mặt cầu $\left( S \right)$ qua $A$ và $B$ nên ta có $IA = IB = R$ .
Từ giả thiết $IA = IB$ ta có \(I{A^2} = I{B^2}\)
\( \Leftrightarrow {(2t - 1)^2} + {(t + 2)^2} + {(2 + t)^2} = {(1 + 2t)^2} + {(4 - t)^2} + {t^2}\)
\( \Leftrightarrow - 4t + 4t + 4 + 4t + 4 = 4t - 8t + 16\)
\( \Leftrightarrow 8t = 8\)
\( \Leftrightarrow t = 1\)
Suy ra $I\left( {3,1,2} \right)$ . Do đó \(R = IA = \sqrt {9 + 9 + 1} = \sqrt {19} \)
Do đó, đường kính mặt cầu là \(2R = 2\sqrt {19} \)
Hướng dẫn giải:
- Gọi tọa độ tâm mặt cầu theo tham số của đường thẳng \(d\).
- \(\left( S \right)\) đi qua \(A,B \Leftrightarrow IA = IB\), từ đó tìm được tọa độ \(I\) và bán kính \(IA\) suy ra đường kính \(2IA\).