Trong không gian với hệ trục tọa độ $Oxyz$, cho các phương trình sau, phương trình nào không phải là phương trình của mặt cầu?
Trả lời bởi giáo viên
Phương trình đáp án B có dạng \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) với \(a = - 1,b = 2,c = 1\) và \(R = 3\) là phương trình mặt cầu.
Phương trình đáp án A có dạng \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\) với \(a = - 1,b = - 1,c = - 1,d = - 8\) có \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} = \sqrt {11} \) là một phương trình mặt cầu.
Xét phương án C có
\(2{x^2} + 2{y^2} + 2{z^2} - 4x + 2y + 2z + 16 = 0 \Leftrightarrow {x^2} + {y^2} + {z^2} - 2x + y + z + 8 = 0\).
Phương trình có dạng \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\) với \(a = 1,b = - \dfrac{1}{2},c = - \dfrac{1}{2},d = 8\) có \({a^2} + {b^2} + {c^2} - d = 1 + \dfrac{1}{4} + \dfrac{1}{4} - 8 < 0.\)
Không phải là phương trình mặt cầu.
Hướng dẫn giải:
Điều kiện cần và đủ để \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\) là phương trình mặt cầu là \({a^2} + {b^2} + {c^2} - d > 0\)