Câu hỏi:
2 năm trước
Trong không gian $Oxyz$ cho mặt cầu \((S):{x^2} + {y^2} + {z^2} - 2x + 4y + 2z - 3 = 0\). Tính bán kính $R$ của mặt cầu $(S)$.
Trả lời bởi giáo viên
Đáp án đúng: a
Phương trình có dạng \((S):{x^2} + {y^2} + {z^2} + 2ax + 2by \)\(+ 2cz + d = 0\) với \(a = - 1,b = 2,c = 1,d = - 3\).
Ta có công thức
\(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \)\(= \sqrt {{{( - 1)}^2} + {2^2} + {1^2} - ( - 3)} \)\( = 3\)
Hướng dẫn giải:
Mặt cầu có phương trình dạng \({x^2} + {y^2} + {z^2} + 2ax + 2by + 2cz + d = 0\) có tâm \(I\left( { - a; - b; - c} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).