Trong không gian với hệ tọa độ $Oxyz$, cho các điểm $A\left( {1,2, - 4} \right);{\rm{ }}B\left( {1, - 3,1} \right){\rm{ }} và {\rm{ }}C\left( {2,2,3} \right)$. Mặt cầu $(S) $ đi qua $A,B,C$ và có tâm thuộc mặt phẳng $(xOy) $ có bán kính là :
Trả lời bởi giáo viên
Tâm $I$ thuộc mặt phẳng $\left( {xOy} \right):z = 0$ nên ta có $z = 0$ . Suy ra, giả sử $I\left( {x,y,0} \right)$.
Mặt cầu $\left( S \right)$ qua $A,B,C$ nên ta có \(IA = IB = IC = R\)
Ta có
\(\left\{ \begin{array}{l}I{A^2} = I{B^2}\\I{B^2} = I{C^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{(x - 1)^2} + {(y - 2)^2} + {(4)^2} = {(x - 1)^2} + {(y + 3)^2} + {( - 1)^2}\\{(x - 1)^2} + {(y + 3)^2} + {( - 1)^2} = {(x - 2)^2} + {(y - 2)^2} + {(3)^2}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l} - 4y + 4 + 16 = 6y + 9 + 1\\ - 2x + 1 + 6y + 9 + 1 = - 4x + 4 - 4y + 4 + 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 10y = - 10\\2x + 10y = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 1\\x = - 2\end{array} \right.\).
Vậy $I\left( { - 2,1,0} \right)$.
Có \(IA = \sqrt {26} = R\)
Hướng dẫn giải:
- Gọi tọa độ tâm \(I\) thỏa mãn phương trình mặt phẳng.
- Mặt cầu tâm \(I\) đi qua \(3\) điểm nếu \(IA = IB = IC\), từ đó tìm \(I\) và suy ra phương trình mặt cầu.