Câu hỏi:
2 năm trước

Trong không gian Oxyz, cho 3 điểm \(A\left( {0;1;1} \right),{\mkern 1mu} B\left( {3;0; - 1} \right),{\mkern 1mu} C\left( {0;21; - 19} \right)\) và mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 1\). Điểm M thuộc mặt cầu (S) sao cho tổng \(3M{A^2} + 2M{B^2} + M{C^2}\) đạt giá trị nhỏ nhất, khi đó, độ dài vectơ \(\overrightarrow {OM} \) là

Trả lời bởi giáo viên

Đáp án đúng: c

+) Mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 1\) có tâm \(J\left( {1;1;1} \right)\), bán kính \(R = 1\).

+) Tìm \(I\): 

\(3\overrightarrow {IA}  + 2\overrightarrow {IB}  + \overrightarrow {IC}  = \vec 0 \) \(\Leftrightarrow 6\overrightarrow {IA}  + 2\overrightarrow {AB}  + \overrightarrow {AC}  = \vec 0 \) \(\Leftrightarrow \overrightarrow {IA}  =  - \dfrac{{2\overrightarrow {AB}  + \overrightarrow {AC} }}{6}\)

\(A\left( {0;1;1} \right),{\mkern 1mu} B\left( {3;0; - 1} \right),{\mkern 1mu} C\left( {0;21; - 19} \right) \) \(\Rightarrow \overrightarrow {IA} \left( { - {x_I};1 - {y_I};1 - {z_I}} \right),{\mkern 1mu} {\mkern 1mu} \overrightarrow {AB} \left( {3; - 1; - 2} \right),\) \({\mkern 1mu} {\mkern 1mu} \overrightarrow {AC} \left( {0;20; - 20} \right)\)

\( \Rightarrow \left\{ \begin{array}{l} - {x_I} =  - \dfrac{{2.3 + 0}}{6}\\1 - {y_I} =  - \dfrac{{2.\left( { - 1} \right) + 20}}{6}\\1 - {z_I} =  - \dfrac{{2.\left( { - 2} \right) + \left( { - 20} \right)}}{6}\end{array} \right.\) \( \Rightarrow I\left( {1;4; - 3} \right)\)

+) Ta có:

\(\begin{array}{l}3M{A^2} + 2M{B^2} + M{C^2} \\= 3{\left( {\overrightarrow {MI}  + \overrightarrow {IA} } \right)^2} + 2{\left( {\overrightarrow {MI}  + \overrightarrow {IB} } \right)^2} + {\left( {\overrightarrow {MI}  + \overrightarrow {IC} } \right)^2}\\ = 6M{I^2} + 3I{A^2} + 2I{B^2} + I{C^2} \\+ 2.\overrightarrow {MI} .\left( {3\overrightarrow {IA}  + 2\overrightarrow {IB}  + \overrightarrow {IC} } \right) \\= 6M{I^2} + 3I{A^2} + 2I{B^2} + I{C^2} + 2.\overrightarrow {MI} .\vec 0\\ = 6M{I^2} + 3I{A^2} + 2I{B^2} + I{C^2}\end{array}\)

Để tổng trên là nhỏ nhất thì MI nhỏ nhất \( \Rightarrow M\) là giao điểm của đoạn thẳng IJ và  mặt cầu \(\left( S \right)\).

\(\overrightarrow {JI}  = \left( {0;3; - 4} \right)\)\( \Rightarrow \) Tọa độ điểm \(M\) thuộc đoạn IJ có dạng \(\left( {1;1 + 3t;1 - 4t} \right),{\mkern 1mu} {\mkern 1mu} t \in \left[ {0;1} \right]\)

Mặt khác \(M \in \left( S \right) \) \(\Rightarrow {\left( {1 - 1} \right)^2} + {\left( {1 - \left( {1 + 3t} \right)} \right)^2} + {\left( {1 - \left( {1 - 4t} \right)} \right)^2} = 1\)

\( \Leftrightarrow {t^2} = \dfrac{1}{{25}} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\rm{\;}}&{t = \dfrac{1}{5}}\\{}&{t =  - \dfrac{1}{5}{\mkern 1mu} (L)}\end{array}} \right. \Leftrightarrow t = \dfrac{1}{5}\)\( \Rightarrow M\left( {1;\dfrac{8}{5};\dfrac{1}{5}} \right) \Rightarrow OM = \dfrac{{3\sqrt {10} }}{5}\).

Hướng dẫn giải:

- Tìm tọa độ điểm \(I\) sao cho  \(3\overrightarrow {IA}  + 2\overrightarrow {IB}  + \overrightarrow {IC}  = \vec 0\).

- Biến đổi \(3M{A^2} + 2M{B^2} + M{C^2}\) qua dạng vecto và đánh giá giá trị nhỏ nhất của tổng.

Câu hỏi khác