Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $(S)$ có phương trình
\({(x - 1)^2} + {(y + 2)^2} + {(z - 3)^2} = 50\). Trong số các đường thẳng sau, mặt cầu $(S)$ tiếp xúc với đường thẳng nào.
Trả lời bởi giáo viên
$(S)$ có tâm \(I(1; - 2;3)\) và \(R = \sqrt {50} \)
Gọi $M$ là hình chiếu của $I$ lên trục $Ox$.
Suy ra \(M(1;0;0) \Rightarrow d(I,{\rm{Ox) = MI = }}\sqrt {{2^2} + {3^2}} = \sqrt {13} \ne R \Rightarrow \), loại B.
Gọi $N$ là hình chiếu của $I$ lên trục $Oy$.
Suy ra $N(0; - 2;0) \Rightarrow d(I,{\text{Oy) = NI = }}\sqrt {{1^2} + {3^2}} = \sqrt {10} \ne R \Rightarrow $ loại C
Gọi $P$ là hình chiếu của $I$ lên trục $Oz$.
Suy ra \(P(0;0;3) \Rightarrow d(I,{\rm{Oz) = PI = }}\sqrt {{1^2} + {2^2}} = \sqrt 5 \ne R \Rightarrow \), loại D
Hướng dẫn giải:
- Chỉ ra tâm $I$ và bán kính của mặt cầu $(S)$
- Tìm hình chiếu của $I $ trên các trục tọa độ, từ đó tính khoảng cách từ $I$ đến các trục tọa độ. Từ đó xác định được tính đúng sai của các đáp án B,C,D. Kết luận.