Câu hỏi:
1 năm trước

Tính \(A = \left( {x - 1} \right)\left( {{x^2} - x - 1} \right) - {x^2}\left( {x - 2} \right) - 2\)

Trả lời bởi giáo viên

Đáp án đúng: b

Ta có:

 \(\begin{array}{l}A = \left( {x - 1} \right)\left( {{x^2} - x - 1} \right) - {x^2}\left( {x - 2} \right) - 2\\\,\,\,\,\, = \left( {x - 1} \right){x^2} - \left( {x - 1} \right)x - \left( {x - 1} \right) - {x^3} + 2{x^2} - 2\\\,\,\,\,\, = {x^3} - {x^2} - {x^2} + x - x + 1 - {x^3} + 2{x^2} - 2\\\,\,\,\,\, =  - 1.\end{array}\)

Hướng dẫn giải:

Nhân đa thức với đa thức

Cách 1: Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau

Cách 2: Đặt tính nhân:

+ Nhân lần lượt mỗi hạng tử ở dòng dưới với đa thức ở dòng trên và viết kết quả trng một dòng riêng.

+ Viết các dòng sao cho các hạng tử cùng bậc thẳng cột với nhau để thực hiện phép cộng theo cột.

Câu hỏi khác