Câu hỏi:
2 năm trước
Tính $4\cos {15^0}\cos {24^0}\cos {21^0} - \cos {\rm{1}}{{\rm{2}}^0} - \cos {18^0}$
Trả lời bởi giáo viên
Đáp án đúng: a
Ta có
$\begin{array}{l}4\cos {15^0}\cos {24^0}\cos {21^0} - \cos {\rm{1}}{{\rm{2}}^0} - \cos {18^0}\\ = 2\cos {15^0}\left( {\cos \left( {{{24}^0} + {{21}^0}} \right) + \cos \left( {{{24}^0} - {{21}^0}} \right)} \right) - 2\cos \left( {\dfrac{{{\rm{1}}{{\rm{2}}^0} + 18{}^0}}{2}} \right)\cos \left( {\dfrac{{{{12}^0} - {{18}^0}}}{2}} \right)\\ = 2\cos {15^0}\left( {\cos {{45}^0} + \cos {3^0}} \right) - 2\cos {15^0}\cos {3^0}\\ = 2\cos {15^0}.\cos {45^0} = \cos {60^0} + \cos {30^0} = \dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}\end{array}$