Câu hỏi:
2 năm trước
Tìm số tự nhiên \(x\) sao cho: \(6\dfrac{1}{3}:4\dfrac{2}{9} < x < \left( {10\dfrac{2}{9} + 2\dfrac{2}{5}} \right) - 6\dfrac{2}{9}\).
Trả lời bởi giáo viên
Đáp án đúng: a
\(\begin{array}{l}6\dfrac{1}{3}:4\dfrac{2}{9} < x < \left( {10\dfrac{2}{9} + 2\dfrac{2}{5}} \right) - 6\dfrac{2}{9}\\\dfrac{{19}}{3}:\dfrac{{38}}{9} < x < \dfrac{{92}}{9} + \dfrac{{12}}{5} - \dfrac{{56}}{9}\\\dfrac{3}{2} < x < \dfrac{{32}}{5}\end{array}\)
Ta có:
\(\begin{array}{l}\dfrac{3}{2} < x < \dfrac{{32}}{5}\\1,5 < x < 6,4\end{array}\)
Vì x là số tự nhiên nên \(x \in \left\{ {2;3;4;5;6} \right\}\).
Hướng dẫn giải:
Rút gọn vế trái và vế phải bằng cách đưa hỗn số về phân số. Từ đó chọn số phù hợp.