Câu hỏi:
1 năm trước

Tìm các số \(x;y;z\) biết \(\dfrac{{x - 1}}{2} = \dfrac{{y + 3}}{4} = \dfrac{{z - 5}}{6}\,\,\,(1)\) và \(5z - 3x - 4y = 50\)

Trả lời bởi giáo viên

Đáp án đúng: c

Nhân cả tử và mẫu của tỉ số thứ nhất, thứ hai và thứ ba của $(1)$ lần lượt với \( - 3; - 4;5\) ta được

\(\dfrac{{ - 3\left( {x - 1} \right)}}{{ - 6}} = \dfrac{{ - 4\left( {y + 3} \right)}}{{ - 16}} = \dfrac{{5\left( {z - 5} \right)}}{{30}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{{ - 3\left( {x - 1} \right)}}{{ - 6}} = \dfrac{{ - 4\left( {y + 3} \right)}}{{ - 16}} = \dfrac{{5\left( {z - 5} \right)}}{{30}}\)\( = \dfrac{{ - 3\left( {x - 1} \right) - 4\left( {y + 3} \right) + 5\left( {z - 5} \right)}}{{ - 6 - 16 + 5.6}}\) \( = \dfrac{{ - 3x + 3 - 4y - 12 + 5z - 25}}{8} = \dfrac{{\left( {5z - 3x - 4y} \right) - 34}}{8}\)

\( = \dfrac{{50 - 34}}{8} = \dfrac{{16}}{8} = 2\)

Do đó \(\dfrac{{x - 1}}{2} = 2 \Rightarrow x - 1 = 4 \Rightarrow x = 5\)

\(\dfrac{{y + 3}}{4} = 2 \Rightarrow y + 3 = 8 \Rightarrow y = 5\)

\(\dfrac{{z - 5}}{6} = 2 \Rightarrow z - 5 = 12 \Rightarrow z = 17\)

Vậy \(x = 5;y = 5;z = 17.\)

Hướng dẫn giải:

Áp dụng tính chất của dãy tỉ số bằng nhau $\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{{ma + nc}}{{mb + nd}} = \dfrac{{ma - nc}}{{mb - nd}}$ để giải bài toán.

Giải thích thêm:

Cách 2: Đặt \(\dfrac{{x - 1}}{2} = \dfrac{{y + 3}}{4} = \dfrac{{z - 5}}{6} = k\,\left( {k \in \mathbb{N}} \right)\) ta có \(x = 2k + 1;y = 4k - 3;z = 6k + 5\)

Thay vào \(5z - 3x - 4y = 50\) ta tìm được \(k\) từ đó tìm được \(x;y;z.\)

Câu hỏi khác