Tìm biểu thức M, biết: \(\dfrac{{x + 2y}}{{{x^3} - 8{y^3}}}\, \cdot \,M = \dfrac{{5{x^2} + 10xy}}{{{x^2} + 2xy + 4{y^2}}}\).
Trả lời bởi giáo viên
Ta có:
\(\begin{array}{l}\dfrac{{x + 2y}}{{{x^3} - 8{y^3}}}\, \cdot \,M = \dfrac{{5{x^2} + 10xy}}{{{x^2} + 2xy + 4{y^2}}}\\M = \dfrac{{5{x^2} + 10xy}}{{{x^2} + 2xy + 4{y^2}}}:\dfrac{{x + 2y}}{{{x^3} - 8{y^3}}}\\M = \dfrac{{5{x^2} + 10xy}}{{{x^2} + 2xy + 4{y^2}}} \cdot \dfrac{{{x^3} - 8{y^3}}}{{x + 2y}}\\M = \dfrac{{5x(x + 2y)}}{{{x^2} + 2xy + 4{y^2}}} \cdot \dfrac{{(x - 2y)({x^2} + 2xy + 4{y^2})}}{{x + 2y}}\\M = 5x(x - 2y).\end{array}\).
Hướng dẫn giải:
Bước 1: Sử dụng phép chia hai phân thức: \(\dfrac{A}{B}:\dfrac{C}{D} = \dfrac{A}{B}.\dfrac{D}{C};\,\,\left( {\dfrac{C}{D} \ne 0} \right)\).
Bước 2: Rút gọn phân thức thu được.