Thu gọn \(A = {\sin ^2}\alpha + {\sin ^2}\beta + 2\sin \alpha \sin \beta .\cos \left( {\alpha + \beta } \right)\) ta được:
Trả lời bởi giáo viên
$A = {\sin ^2}\alpha + {\sin ^2}\beta $ $+ 2\sin \alpha \sin \beta .\cos \left( {\alpha + \beta } \right)$
$= {\sin ^2}\alpha + {\sin ^2}\beta $ $+ 2\sin \alpha \sin \beta .\left( {\cos \alpha .\cos\beta - \sin \alpha .\sin\beta } \right)$
$= {\sin ^2}\alpha + {\sin ^2}\beta - 2{\sin ^2}\alpha {\sin ^2}\beta $ $ + 2\sin \alpha \sin \beta \cos \alpha .\cos\beta$
$= {\sin ^2}\alpha \left( {1 - {{\sin }^2}\beta } \right) + {\sin ^2}\beta \left( {1 - {{\sin }^2}\alpha } \right) + 2\sin \alpha \sin \beta \cos \alpha .\cos\beta$
$= {\sin ^2}\alpha {\cos ^2}\beta + {\sin ^2}\beta {\cos ^2}\alpha $ $+ 2\sin \alpha \sin \beta \cos \alpha .\cos\beta$
$= {\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right)^2} = {\sin ^2}\left( {\alpha + \beta } \right)$