So sánh \(\dfrac{{{a^n} + {b^n}}}{2}\) và \({\left( {\dfrac{{a + b}}{2}} \right)^n}\) , với \(a \ge 0,b \ge 0,n \in {N^*}\) ta được:
Trả lời bởi giáo viên
Với $n = 1$ ta có \(\dfrac{{a + b}}{2} = \dfrac{{a + b}}{2}\), do đó loại đáp án A.
Với $n = 2$, chọn bất kì $a = 1,b = 2$ ta có:
\(\dfrac{{{a^n} + {b^n}}}{2} = \dfrac{{{1^2} + {2^2}}}{2} = \dfrac{5}{2},\) \({\left( {\dfrac{{a + b}}{2}} \right)^n} = {\left( {\dfrac{{1 + 2}}{2}} \right)^2} = \dfrac{9}{4} \) \(\Rightarrow \dfrac{{{a^n} + {b^n}}}{2} > {\left( {\dfrac{{a + b}}{2}} \right)^n} \)
Đáp án C sai.
Ta chứng minh đáp án B đúng với mọi \(a \ge 0,b \ge 0,n \in {N^*}\) bằng phương pháp quy nạp.
Với $n = 1$ mệnh đề đúng.
Giả sử mệnh đề đúng đến \(n = k\left( {k \ge 1} \right) \Leftrightarrow \dfrac{{{a^k} + {b^k}}}{2} \ge {\left( {\dfrac{{a + b}}{2}} \right)^k}\left( 1 \right)\)
Ta phải chứng minh \(\dfrac{{{a^{k + 1}} + {b^{k + 1}}}}{2} \ge {\left( {\dfrac{{a + b}}{2}} \right)^{k + 1}}\)
Thật vậy, ta nhân $2$ vế của (1) với \(\dfrac{{a + b}}{2} > 0\) ta có:
\(\dfrac{{{a^k} + {b^k}}}{2}.\dfrac{{a + b}}{2} \ge {\left( {\dfrac{{a + b}}{2}} \right)^k}.\dfrac{{a + b}}{2} \Leftrightarrow \dfrac{{{a^{k + 1}} + {a^k}b + a{b^k} + {b^{k + 1}}}}{4} \ge {\left( {\dfrac{{a + b}}{2}} \right)^{k + 1}}\left( 2 \right)\)
Do \(a \ge 0,b \ge 0\). Nếu \(a \ge b \ge 0 \Rightarrow \left( {{a^k} - {b^k}} \right)\left( {a - b} \right) \ge 0\), nếu \(0 \le a \le b \Rightarrow \left( {{a^k} - {b^k}} \right)\left( {a - b} \right) \ge 0\)
\(\begin{array}{l} \Rightarrow \left( {{a^k} - {b^k}} \right)\left( {a - b} \right) \ge 0\,\,\,\forall a \ge 0,b \ge 0\\ \Rightarrow {a^{k + 1}} + {b^{k + 1}} \ge {a^k}b + a{b^k} \Rightarrow \dfrac{{{a^{k + 1}} + {a^k}b + a{b^k} + {b^{k + 1}}}}{4} \le \dfrac{{{a^{k + 1}} + {a^{k + 1}} + {b^{k + 1}} + {b^{k + 1}}}}{4} = \dfrac{{{a^{k + 1}} + {b^{k + 1}}}}{2}\end{array}\)
Từ (2) suy ra $\dfrac{{{a^{k + 1}} + {b^{k + 1}}}}{2} \ge {\left( {\dfrac{{a + b}}{2}} \right)^{k + 1}}$, do đó mệnh đề đúng đến $n = k + 1$.
Vậy mệnh đề đúng với mọi $n,a,b$ thỏa mãn điều kiện bài toán.
Hướng dẫn giải:
+ Cho $n$ một giá trị bất kì, chẳng hạn $n=1,n=2,...$ để loại đáp án.
+ Sử dụng phương pháp quy nạp toán học để chứng minh bất đẳng thức.