Phương trình \(\dfrac{1}{3} - \left| {\dfrac{5}{4} - 2x} \right| = \dfrac{1}{4}\) có nghiệm là
Trả lời bởi giáo viên
\(\begin{array}{l}\;\;\;\;\;\dfrac{1}{3} - \left| {\dfrac{5}{4} - 2x} \right| = \dfrac{1}{4}\\ \Leftrightarrow \left| {\dfrac{5}{4} - 2x} \right| = \dfrac{1}{3} - \dfrac{1}{4}\\ \Leftrightarrow \left| {\dfrac{5}{4} - 2x} \right| = \dfrac{1}{{12}}\,\left( * \right)\end{array}\)
\(\begin{array}{l}TH1:\;\dfrac{5}{4} - 2x \ge 0 \Leftrightarrow x \le \dfrac{5}{8} \Rightarrow \left| {\dfrac{5}{4} - 2x} \right| = \dfrac{5}{4} - 2x\\ \Rightarrow pt\,\,\left( * \right) \Leftrightarrow \dfrac{5}{4} - 2x = \dfrac{1}{{12}}\\ \Leftrightarrow 2x = \dfrac{7}{6}\\ \Leftrightarrow x = \dfrac{7}{{12}}\;\;\left( {tm} \right)\end{array}\)
\(\begin{array}{l}TH2:\;\;\dfrac{5}{4} - 2x < 0 \Leftrightarrow x > \dfrac{5}{8} \Rightarrow \left| {\dfrac{5}{4} - 2x} \right| = - \dfrac{5}{4} + 2x\;\\ \Rightarrow pt\,\left( * \right) \Leftrightarrow - \dfrac{5}{4} + 2x = \dfrac{1}{{12}}\\ \Leftrightarrow 2x = \dfrac{4}{3}\\ \Leftrightarrow x = \dfrac{2}{3}\;\;\left( {tm} \right).\;\end{array}\)
Vậy phương trình có hai nghiệm \(x = \dfrac{7}{{12}}\) và \(x = \dfrac{2}{3}\).
Hướng dẫn giải:
Bỏ dấu giá trị tuyệt đối bằng công thức: \(\left| a \right| = \left\{ \begin{array}{l}a\;\;khi\;\;a \ge 0\\ - a\;\;khi\;\;a < 0\end{array} \right..\)