Người ta cần chế tạo các món quà lưu niệm bằng đồng có dạng khối chóp tứ giác đều, được mạ vàng bốn mặt bên và có thể tích bằng \(16 cm^3.\) Diện tích mạ vàng nhỏ nhất của khối chóp bằng bao nhiêu \(cm^2\)? (Kết quả làm tròn đến hàng đơn vị.)
Đáp án
$cm^3$
Trả lời bởi giáo viên
Đáp án
$cm^3$
Bước 1: Giả sử chóp tứ giác đều là \(S.ABCD\). Gọi \(O = AC \cap BD\), đặt \(AB = x\,\,\left( {x > 0} \right)\), tính \(SO\) theo \(x\).
Giả sử chóp tứ giác đều là \(S.ABCD\). Gọi \(O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right)\).
Đặt \(AB = x\,\,\left( {x > 0} \right)\) ta có \({S_{ABCD}} = {x^2}\) \( \Rightarrow {V_{S.ABCD}} = \dfrac{1}{3}SO.{S_{ABCD}} = \dfrac{1}{3}SO.{x^2} = 16 \Leftrightarrow SO = \dfrac{{48}}{{{x^2}}}\).
Bước 2: Gọi M là trung điểm của CD. Tính \(SM\) theo \(x\), từ đó tính \({S_{\Delta SCD}}\) theo \(x\).
Gọi M là trung điểm của CD ta có \(\left\{ \begin{array}{l}CD \bot OM\\CD \bot SO\end{array} \right. \Rightarrow CD \bot \left( {SOM} \right) \Rightarrow CD \bot SM\).
Ta có \(OM = \dfrac{1}{2}AD = \dfrac{1}{2}AB = \dfrac{x}{2}\), áp dụng định lí Pytago ta có: \(SM = \sqrt {S{O^2} + O{M^2}} = \sqrt {{{\left( {\dfrac{{48}}{{{x^2}}}} \right)}^2} + \dfrac{{{x^2}}}{4}} \).
\( \Rightarrow {S_{\Delta SCD}} = \dfrac{1}{2}SM.CD = \dfrac{1}{2}\sqrt {{{\left( {\dfrac{{48}}{{{x^2}}}} \right)}^2} + \dfrac{{{x^2}}}{4}} .x = \dfrac{1}{2}\sqrt {\dfrac{{{{48}^2}}}{{{x^2}}} + \dfrac{{{x^4}}}{4}} \)
Bước 3: Tìm GTNN của diện tích mạ vàng
Để diện tích mạ vàng nhỏ nhất thì \({S_{\Delta SCD}}\) nhỏ nhất \( \Rightarrow \dfrac{{{{48}^2}}}{{{x^2}}} + \dfrac{{{x^4}}}{4}\) đạt giá trị nhỏ nhất.
Ta có \(\dfrac{{{{48}^2}}}{{{x^2}}} + \dfrac{{{x^4}}}{4} = \dfrac{{1152}}{{{x^2}}} + \dfrac{{1152}}{{{x^2}}} + \dfrac{{{x^4}}}{4} \ge 3\sqrt[3]{{\dfrac{{1152}}{{{x^2}}}.\dfrac{{1152}}{{{x^2}}} . \dfrac{{{x^4}}}{4}}} \)\(\ge 3.\sqrt[3]{331776}\) (BĐT Cô-si).
Vậy diện tích mạ vàng nhỏ nhất là \(4.3.\sqrt[3]{331776}\approx 831\,c{m^3}\).
Hướng dẫn giải:
Bước 1: Giả sử chóp tứ giác đều là \(S.ABCD\). Gọi \(O = AC \cap BD\), đặt \(AB = x\,\,\left( {x > 0} \right)\), tính \(SO\) theo \(x\).
Bước 2: Gọi M là trung điểm của CD. Tính \(SM\) theo \(x\), từ đó tính \({S_{\Delta SCD}}\) theo \(x\).
Bước 3: Để diện tích mạ vàng nhỏ nhất thì \({S_{\Delta SCD}}\) nhỏ nhất. Sử dụng BĐT Cô-si tìm GTNN.