Câu hỏi:
1 năm trước

Một xe ôtô chuyển động chậm dần đều với vận tốc ban đầu \(v_0= 20m/s\) và gia tốc \(3m/s^2\). Vận tốc của xe khi đi thêm \(50m\) và quãng đường đi được cho đến khi dừng lại hẳn lần lượt có giá trị là:

Trả lời bởi giáo viên

Đáp án đúng: b

Ta có: \({v^2} - v_0^2 = 2{\rm{as}}\)

Vận tốc của xe khi đi được quãng đường \(50 m\): \({v_1}^2 - v_0^2 = 2{\rm{a}}{{\rm{s}}_1} \to v = \sqrt {2{\rm{a}}{{\rm{s}}_1} + v_0^2}  = \sqrt {2.( - 3).50 + {{20}^2}}  = 10m/s\)
Quãng đường vật đi được cho đến khi dừng hẳn: \({v^2} - v_0^2 = 2{\rm{as}} \to s = \dfrac{{{v^2} - v_0^2}}{{2{\rm{a}}}} = \dfrac{{{0^2} - {{20}^2}}}{{2.( - 3)}} = 66,67m\)

Hướng dẫn giải:

Vận dụng biểu thức độc lập: \({v^2} - v_0^2 = 2{\rm{as}}\)

Câu hỏi khác