Một vật có khối lượng \(100g\) được ném thẳng đứng từ dưới lên với vận tốc \({v_0} = 20m/s\)
Xác định vị trí cao nhất vật đạt được
Trả lời bởi giáo viên
Chọn gốc thế năng tại vị trí ném
- Tại vị trí ném vật ta có:
+ Thế năng của vật tại đó: ${{\rm{W}}_t} = 0$
+ Động năng của vật tại đó: ${{\rm{W}}_d} = \dfrac{1}{2}mv_0^2 = \dfrac{1}{2}.0,{1.20^2} = 20J$
=> Cơ năng của vật: ${\rm{W}} = {{\rm{W}}_d} + {{\rm{W}}_t} = 20 + 0 = 20J$
- Tại vị trí cao nhất, ta có:
+ Thế năng: ${{\rm{W}}_t} = mg{h_{max}}$
+ Động năng: ${{\rm{W}}_d} = 0$
=> Cơ năng của vật tại vị trí cao nhất: ${{\rm{W}}_{{h_{max}}}} = {{\rm{W}}_t} + {{\rm{W}}_d} = mg{h_{max}}$
- Áp dụng định luật bảo toàn cơ năng cho 2 vị trí (lúc ném vật và khi vật đạt độ cao cực đại), ta có:
\(\dfrac{1}{2}mv_0^2 = mg{h_{max}} \to {h_{max}} = \dfrac{{v_0^2}}{{2g}} = \dfrac{{{{12}^2}}}{{2.10}} = 7,2m\)
Hướng dẫn giải:
+ Sử dụng điểu thức tính thế năng: ${{\rm{W}}_t} = mgh$
+ Sử dụng biểu thức tính động năng: ${{\rm{W}}_d} = \dfrac{1}{2}m{v^2}$
+ Sử dụng biểu thức tính cơ năng: ${\rm{W}} = {{\rm{W}}_d} + {{\rm{W}}_t}$
+ Áp dụng định luật bảo toàn cơ năng ${\rm{W}} = const$